

Brought to you by the Light Whisperer®

Professional Experience of Stephen K. Wilcken

For more information, visit: <u>www.kerryos.com</u>

Copyright 2018, Kerry Optical Systems, LLC. All rights reserved.

Diffracted Light Visualization

1m Aperture Aberration-corrected 125x Laser Beam Expander

Near-field Irradiance Profile of 125x Laser Beam Expander

Coma-corrected design vs. typical off-axis parabola

Simulating Image Degradation due to Atmospheric Turbulence Effects

- Atmospheric turbulence (*e.g.*, astronomical "seeing") reduces angular resolution of optical instrumentation
- Time-averaged blur has Gaussian intensity distribution
- Size of Gaussian distribution is proportional to magnitude of atmospheric turbulence

No turbulence

With turbulence

Time-averaged image of point source, in the presence of atmospheric turbulence Time-averaged image of extended source, in the presence of atmospheric turbulence

Atmospheric Turbulence

- Atmospheric turbulence is characterized by the atmospheric refractive index structure constant C_n²
- C_n^2 values are typically 1 x 10⁻¹⁴ at night and 2 x 10⁻¹⁴ during the day
- Fried's parameter r_0 is the statistically averaged maximum effective aperture diameter over which diffraction-limited resolution is possible
- r_0 is related to C_n^2 by the equation

$$r_0 = (0.423 C_n^2 k^2 z)^{-3/5}$$

where C_n^2 has units of m^{-2/3}, k = $2\pi/\lambda$, wavelength λ and range z are expressed in meters

• Time-averaged angular diameter (FWHM in radians) of the "seeinginduced" PSF (point spread function) is given by

```
FWHM = 0.98 \lambda / r<sub>o</sub>
```

where r_0 and λ are expressed in the same units

Modeling Atmospheric Turbulence

- For analytical modeling (e.g., ray tracing) time-averaged atmospheric turbulence may be modeled as a Gaussian distribution of ray arrival angles across the entrance pupil, with uniform irradiance across the entrance pupil
- Produces Gaussian PSF (intensity distribution) at focal plane

Uniform intensity on centrallyobscured entrance pupil

Optical Modeling of Excimer Laser Beam

Optical Modeling of Excimer Laser Beam

50 mm x 50 mm target at various distance from refractive axicon

Diode Laser Projected Beam Characteristics

5000-

3000 2500 2000 1500

1000 500 0 -500 -100 X (millimeters) Min:1.446e-006, Max:54924, Ave:453.89

Total Flux 16867 W, Flux/Emitted Flux 0.84336, 17062 Incident Rays

-1000 -1500 -2000 -2500

-3000

Fluorescence Measurement

Radius	Thickness/spacing	Material	Nd index of refraction	V-no	Semi-aperture
109.180	8.790	Germanium	4.003	868.0	33.3
163.990	8.710	air	1.0		33.3
-95.310	6.670	Zinc Sulfide	2.200	23.0	32.0
-98.200	85.114	air	1.0		32.0

EFL = 230 mm Per design of Sei Matsui, USP #4338001

Radius	Thickness/spacing	Material	Nd index of refraction	V-no	Semi-aperture
125.546	15.334	Hoya FCD1	1.497	81.6	41.17
-178.97	2.555	air	1.0		40.71
-176.405	4.729	Schott LAFN7	1.750	34.9	39.79
476.611	7.029	air	1.0		39.1
99.378	11.755	Schott N-SSK5	1.658	50.9	38.64
309.221	116.534	air	1.0		37.26
-44.763	2.555	Schott K3	1.518	59.0	20.7
-702.779	0.129	air	1.0		21.85
280.340	5.111	Hoya TAF2	1.794	45.4	22.31
-205.337	52.583	air	1.0		22.54

Measurement of Small-angle Scatter

- The point spread function (PSF) is the response of an imaging system to a point source or point object (e.g., collimated laser beam)
- The degree of spreading (blurring) of the PSF is a measure of the quality of an imaging system, and can be used to quantify small-angle scatter
- Mathematically related to modulation transfer function (MTF)

Point spread function for optical test set-up without test object

Point spread function for optical test set-up including test object

ISS windows (Image courtesy of NASA)

Patented Laser Alignment System

Patented interferometer

Patented particle counter

Patented turbidimeter

Projection system

Patented cold blackbody

1m aperture laser projector

SLCAIR laser projector

Patents

1.) "Laser Alignment System" (U.S. Patent 4,889,425), 26 December 1989

2.) "Passive, Gravity-referencing, Fluid-damped, Two-stage Pendulum Optical Mount" (U.S. Patent 5,220,455), 15 June 1993

3.) "Point-diffraction Interferometer Utilizing Separate Reference and Signal Beam Paths" (U.S. Patent 5,457,533), 10 October 1995

- 4.) "Spherical Bearing Optical Mount" (U.S. Patent 5,506,424), 9 April 1996
- 5.) "Hand-held Nephelometric Turbidimeter Utilizing Non-imaging Concentrator" (U.S. Patent 5,872,361), 16 February 1999
- 6.) "Lenslet/Detector Array Assembly for High Data Rate Optical Communications" (U.S. Patent 7,230,227), 12 June 2007
- 7.) "Hybrid RF/Optical Communication System with Deployable Optics and Atmosphere Compensation System and Method" (U.S. Patent 7,346,281), 18 March 2008
- 8.) "Low-temperature Adjustable Blackbody Apparatus" (U.S. Patent 7,598,506), 6 October 2009
- 9.) "Full Hemisphere Bi-directional Reflectance Distribution Function Instrument" (U.S. Patent 7,869,046), 11 January 2011
- 10.) "Fiber Optic Probe Scatterometer for Spectroscopy Measurements" (U.S. Patent 8,218,142), 10 July 2012

11.) "Fiber Optic Probe Scatterometers for Spectroscopy Measurements" (U.S. Patent 8,525,990), 03 September 2013

- 12.) "Anti-reflection Nanostructure Array and Method" (U.S. Patent 9,207,363), 08 December 2015
- 13.) "Agile Conformal Scanner" (U.S. Patent 9,244,270), January 26, 2015
- 14.) "Method for Extracting Optical Energy from an Optical Beam" (U.S. Patent 9,274,344), 01 March 2016
- 15.) "Method and System for Imaging a Target (U.S. Patent 9,322,776), 26 April 2016